Linear Inequalities for Rank 3 Geometric Lattices

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Linear Inequalities for Rank 3 Geometric Lattices

The flag Whitney numbers (also referred to as the flag f -numbers) of a geometric lattice count the number of chains of the lattice with elements having specified ranks. We give a collection of inequalities which imply all the linear inequalities satisfied by the flag Whitney numbers of rank 3 geometric lattices. We further describe the smallest closed convex set containing the flag Whitney num...

متن کامل

Whitney Number Inequalities for Geometric Lattices

Let L be a finite geometric lattice of rank r, and for i =0, I, •• •» r, let W. denote the number of elements of L with rank i. F or 1 < k < r 2, we have W, + W. + • • • + V, < W ,+•••+ W ., + W , 12 fe r—k r—l r—1 with equality if and only if the lattice L is modular. We give two further results concerning matchings of lattice elements of rank < k into those of rank > r — k, and observe that a...

متن کامل

On the Low Rank Solutions for Linear Matrix Inequalities

In this paper we present a polynomial-time procedure to find a low rank solution for a system of Linear Matrix Inequalities (LMI). The existence of such a low rank solution was shown in AuYeung and Poon [1] and Barvinok [3]. In Au-Yeung and Poon’s approach, an earlier unpublished manuscript of Bohnenblust [6] played an essential role. Both proofs in [1] and [3] are nonconstructive in nature. Th...

متن کامل

Linear rank inequalities on five or more variables

Ranks of subspaces of vector spaces satisfy all linear inequalities satisfied by entropies (including the standard Shannon inequalities) and an additional inequality due to Ingleton. It is known that the Shannon and Ingleton inequalities generate all such linear rank inequalities on up to four variables, but it has been an open question whether additional inequalities hold for the case of five ...

متن کامل

Some weighted operator geometric mean inequalities

In this paper, using the extended Holder- -McCarthy inequality, several inequalities involving the α-weighted geometric mean (0<α<1) of two positive operators are established. In particular, it is proved that if A,B,X,Y∈B(H) such that A and B are two positive invertible operators, then for all r ≥1, ‖X^* (A⋕_α B)Y‖^r≤‖〖(X〗^* AX)^r ‖^((1-α)/2) ‖〖(Y〗^* AY)^r ‖^((1-α)/2) ‖〖(X〗^* BX)^r ‖^(α/2) ‖〖(Y...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Discrete and Computational Geometry

سال: 2004

ISSN: 0179-5376,1432-0444

DOI: 10.1007/s00454-003-0807-6